Examples of clean commutative group rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutative Nil Clean Group Rings

In [5] and [6], a nil clean ring was defined as a ring for which every element is the sum of a nilpotent and an idempotent. In this short article we characterize nil clean commutative group rings.

متن کامل

Strongly Clean Matrix Rings over Commutative Rings

A ring R is called strongly clean if every element of R is the sum of a unit and an idempotent that commute. By SRC factorization, Borooah, Diesl, and Dorsey [3] completely determined when Mn(R) over a commutative local ring R is strongly clean. We generalize the notion of SRC factorization to commutative rings, prove that commutative n-SRC rings (n ≥ 2) are precisely the commutative local ring...

متن کامل

A Characterization of Commutative Clean Rings

A commutative ring A is said to be clean if every element of A can be written as a sum of a unit and an idempotent. This definition dates back to 1977 where it was introduced by W. K. Nicholson [7]. In 2002, V. P. Camillo and D. D. Anderson [1] investigated commutative clean rings and obtained several important results. In [4] Han and Nicholson show that if A is a semiperfect ring, then A[Z2] i...

متن کامل

LWE from Non-commutative Group Rings

The Ring Learning-With-Errors (LWE) problem, whose security is based on hard ideal lattice problems, has proven to be a promising primitive with diverse applications in cryptography. There are however recent discoveries of faster algorithms for the principal ideal SVP problem, and attempts to generalize the attack to non-principal ideals. In this work, we study the LWE problem on group rings, a...

متن کامل

Basic Subgroups in Commutative Modular Group Rings

Let S(RG) be a normed Sylow p-subgroup in a group ring RG of an abelian group G with p-component Gp and a p-basic subgroup B over a commutative unitary ring R with prime characteristic p. The first central result is that 1 + I(RG;Bp) + I(R(p)G;G) is basic in S(RG) and B[1 + I(RG;Bp) + I(R(p )G;G)] is p-basic in V (RG), and [1 + I(RG;Bp) + I(R(p )G;G)]Gp/Gp is basic in S(RG)/Gp and [1 + I(RG;Bp)...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2014

ISSN: 0021-8693

DOI: 10.1016/j.jalgebra.2014.01.030